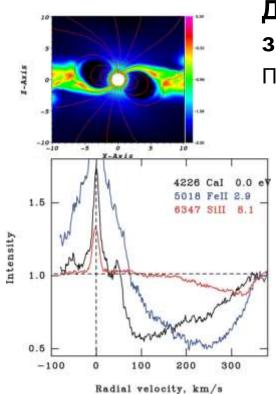


ВАЖНЕЙШИЕ

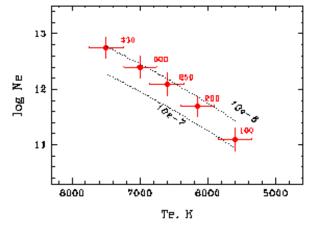
НАУЧНЫЕ


РЕЗУЛЬТАТЫ ЛФЗ

В 2014 ГОДУ

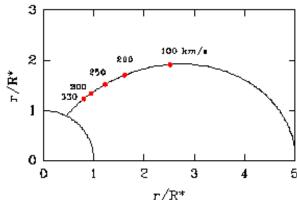
ЗВЁЗДЫ НА РАННИХ СТАДИЯХ ЭВОЛЮЦИИ:

физические характеристики, химический состав и поиск экзопланет



Допплеровское зондирование аккреции на звёздах типа Т Тельца

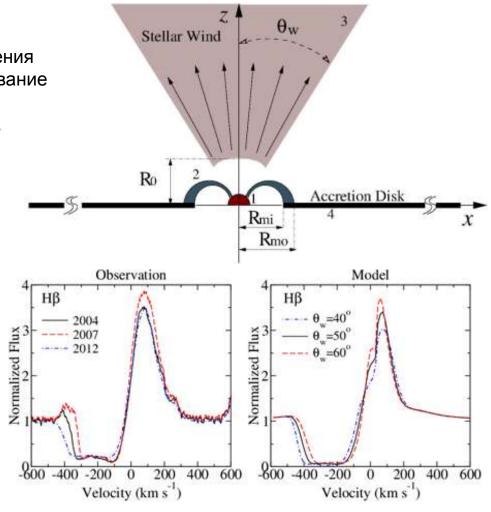
П.П. Петров в соавторстве с зарубежными коллегами


Молодые звёзды типа Т Таи с возрастом < 10 млн. лет окружены протопланетными дисками. Вещество диска перетекает на звезду вдоль магнитных аккреционных каналов. При этом в спектре звезды возникают характерные абсорбционные линии.

Нами предложен метод "допплеровского зондирования" аккреционного канала.

Из анализа спектров звезды S CrA SE показано, что электронная температура и плотность в аккреционном канале возрастают по мере приближения падающего газа к звезде, от Te=5300K, log Ne=10.5 на расстоянии трех радиусов звезды, до Te=7500 K, log Ne=12.7 вблизи поверхности звезды.

P. Petrov, G.F. Gahm, G.J. Herczeg, et al., 2014, Astron. & Astrophys, V.568, L10



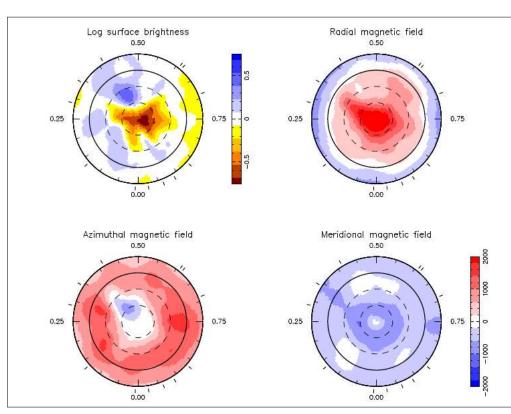
Свойства звёздного ветра пред-фуора V1331 Лебедя

П. Петров, Е. Бабина, С. Артеменко в соавторстве с зарубежными коллегами

У молодых звёзд наблюдается интенсивное истечение вещества (ветер), механизмы ускорения которого не вполне ясны. Мы провели исследование звёздного ветра звезды V1331 Суд типа Т Таи, отличающейся большим темпом потери массы.

Построена модель ветра, хорошо воспроизводящая наблюдаемые изменения профилей эмиссионных линий водорода. Показано, что динамика ветра обусловлена изменениями как темпа аккреции, так и изменениями угла раскрытия (степени коллимации) ветра. Последнее может быть вызвано небольшими изменениями степени замагниченности газа во внутренней области аккреционного диска

(**P. Petrov** et al. 2014, Mon. Not. of the Roy. Astron. Soc. V.442, p.3643)


Моделирование магнитной активности LkCa 4 - молодой звезды типа Т Тельца со слабыми эмиссионными линиями

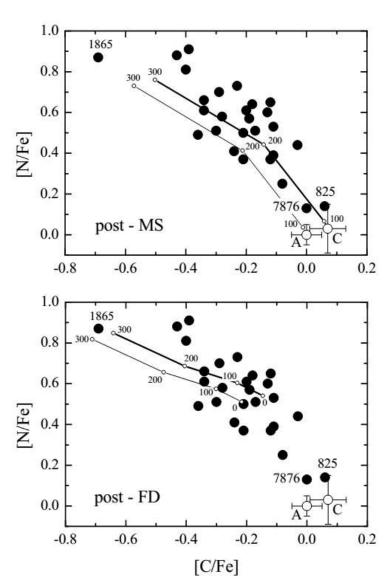
К. Гранкин в соавторстве с зарубежными коллегами

Восстановлена крупномасштабная структура магнитного поля звезды LkCa 4. Спектрополяриметрические наблюдения были получены в январе 2014г на спектрополяриметре ESPaDOnS (3.6м телескоп CFHT). Для восстановления структуры магнитного поля и построения карты температурных неоднородностей применялась процедура обращения свертки методом наименьших квадратов (Least-Squares Deconvolution).

Показано, что магнитное поле является осесимметричным и состоит из полоидального (~2 кГс) и тороидального компонента (~1 кГс). Тороидальный компонент расположен в экваториальных широтах.

В области магнитного полюса находится протяженное холодное фотосферное пятно. Обнаружена яркая хромосферная область на средних широтах. Показано, что фотосферные слои звезды вращаются как твердое тело, в отличие от дифференциального вращения Солнца.

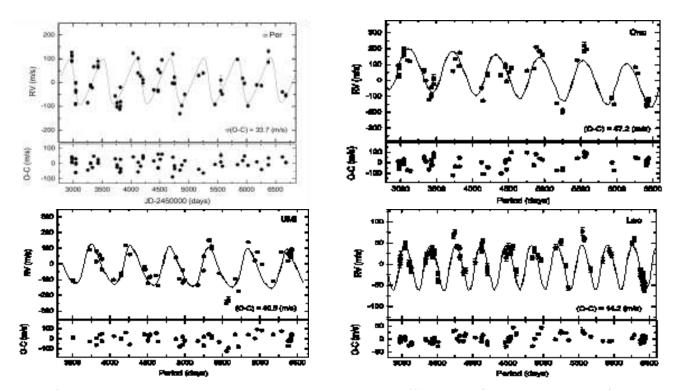
Карта распределения логарифма температуры (по отношению к спокойной фотосфере, верхняя левая панель), радиальной (вверху справа), азимутальной (внизу слева) и меридиональной (внизу справа) компоненты магнитного поля. Звезда показана в полярной проекции вплоть до широты -30°. Экватор отмечен как непрерывный круг, а параллели - как пунктирные круги.


J.-F. Donati, E. Hébrard, G. Hussain, C. Moutou, **K. Grankin** et al. // Mon. Not. of the Roy. Astron. Soc., 2014, V. 444, P. 3220.

Содержание углерода и отношение N/C в атмосферах A-, F- и G-сверхгигантов и ярких гигантов

Л.С. Любимков, Т.М. Рачковская, Д.Б. Поклад в соавторстве с зарубежными коллегами

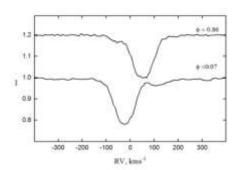
- Молодые достаточно массивные звёзды, находясь на стадии ГП главной последовательности (это В-звёзды ГП), могут испытывать глубокое перемешивание, которое приводит к выносу из недр в атмосферу продуктов СПО-цикла. В результате появляются наблюдаемые аномалии химического состава дефицит углерода и избыток азота. При переходе в следующую эволюционную стадию, стадию AFGK-сверхгигантов и гигантов, эти аномалии могут усиливаться.
- Для 36 А-, F- и G-сверхгигантов и ярких гигантов (классы светимости I и II) из не-ЛТР анализа линий С I определено содержание углерода. Подтверждено пониженное содержание углерода как общее свойство звёзд этого типа. Дефицит углерода [C/Fe] варьируется обычно от -0.1 до -0.5 dex, достигая -0.7 dex. Показано, что дефицит С демонстрирует отчетливую антикорреляцию с избытком N, найденным для тех же звёзд ранее. Отношение азот/углерод [N/C] варьируется от 0.3 до 1.7 dex. Как повышенные значения [N/C], так и сами аномалии С и N свидетельствуют о присутствии в атмосферах звёзд перемешанного вещества из звёздных недр.
- Из сравнения с теорией впервые получено прямое подтверждение существования перемешивания, индуцированного вращением звёзд. В частности, показано, что антикорреляция между азотом и углеродом отражает зависимость от начальной скорости вращения VO (см. рисунок; здесь около узловых точек на теоретических кривых указаны значения VO в км/с).


L.S. Lyubimkov, D.L. Lambert, S.A. Korotin, T.M.Rachkovskaya, D.B. Poklad // Monthly Notices of the Royal Astronomical Society, 2014 (accepted).

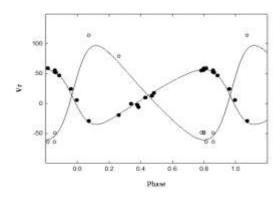
Планетные компаньоны у К гигантов: σ Персея, β Рака, μ Льва и β Малой Медведицы

Д.Е. Мкртичан в соавторстве с южно-корейскими коллегами

Продолжен спектральный мониторинг К-гигантов с целью поиска экзопланет. Обнаружены четыре новых экзопланеты у следующих звёзд: σ Per, β Cnc, μ Leo и β UMi


Орбитальные вариации лучевых скоростей σ Per, β Cnc, μ Leo и β UMi

- 1. Astron. & Astrophys, 2014, V.566, P.67
- 2. Journal of the Korean Astronomical Society, V.47, P.69.


Двойные звёзды на главной последовательности и после нее

Параметры орбиты, обмен массой и кинематические характеристики массивной двойной системы 103 Tau

(А.Е. Тарасов)

Характерные примеры профилей спектральной линии HeI λ 6678 Å у двойной системы 103 Tau.

Кривая переменности лучевых скоростей, полученная по данным измерений линии HeI λ 6678 Å.

Открыта спектральная двойственность массивной яркой звезды 103 Tau.

Обмен массой в системе происходит при наибольшем сближении звёзд в периастре.

Большой эксцентриситет орбиты образовался, вероятно, при упругом столкновении с одной из звёзд рассеянного звёздного скопления α Per 16 ± 4 млн лет назад.

103 Таи была выброшена из скопления и сейчас является убегающей звездой.

Орбитальные элементы двойной системы 103 Tau.

Р (дни)	$58.231 \pm 0,052$
T_0 (JDh)	2452172.8 ± 0.8
e	0.297 ± 0.027
Ω	101º ± 26
K_1 (km/s)	45.7 ± 2.1
K_2 (km/s)	79.8 ± 4.3
q	0.580 ± 0.020
γ (km/s)	13.5 ± 1.0

Ранняя эволюция необычной новой V339 Del

(Т.Н. Тарасова).

Ha обширных спектроскопических основе данных классической новой V339 Del методом моделирования распределения энергии наблюдаемых спектров получены физические характеристики оболочки новой: светимость, радиус, температура. Исследование временной эволюции этих параметров оболочки новой в ранней стадии после вспышки позволило установить, что новая развивалась не так как предсказывают существующие теоретические оболочки Светимость модели. превышала Эддингтоновскую и была непостоянной. Максимум светимости наблюдался за 12 часов до максимума блеска, при этом эффективная температура была максимальной, и оболочка расширялась неоднородно. Таким образом, эта новая является интересным объектом дальнейшего ДЛЯ развития теоретического моделирования новых. На рис. 1 показана временная эволюция температуры, светимости и радиуса оболочки новой V339 Del.

Результаты опубликованы в журнале «Astronomy & Astrophysics», 569, 112, 2014.

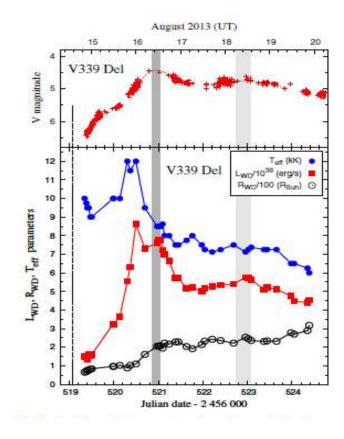


Рис.1. Временная эволюция светимости, радиуса и температуры оболочки новой V339 Del в течение фазы оптически толстой оболочки. Пунктирной линией и серой полосой отмечены дата открытия новой и максимум блеска в полосе V, соответственно.

Спектральное исследование оболочки Новой N Mon 2012, источника ү-излучения

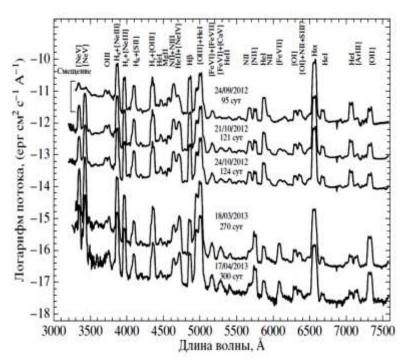
(Т.Н. Тарасова)

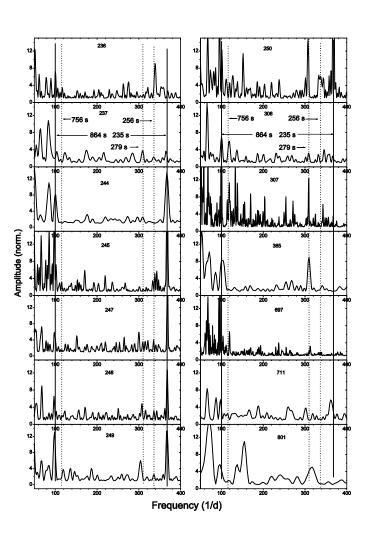
На основе спектрофотометрических наблюдений исследована оболочка HeN новой N Mon 2012. Оценено содержание некоторых химических элементов. Результаты показали, что в оболочке этой новой содержание гелия превышает солнечное в 1.5 раза, азота − в 33 раза, кислорода в 9 раз, неона в 95 раз. Определена масса оболочки, которая равна 2.3*10-4М_ж.

Таблица 1. Основные характеристики новой N Mon 2012

JD_{max}	≈ 2456096.5
V _{max}	3-4 зв. вел.?
M_{Vmax}	?
Класс скорости (t ₂ ≤10)	очень быстрая
Расстояние (кпк)	1-4
Избыток цвета E(B-V)	0.38, 0.85
Масса белого карлика (M _☉)	1.1 -1.3
Свектральный класс	HeN
Тип белого карлика	ONe
Скорость расширения оболочки (км/с)	1140
Содержание химических элементов	
относительно солнечного (по массе ¹):	
H/H _☉	0.74
He/He _⊜	1.11
N/N_{\odot}	24.4
O/O _☉	6.86
Ne/Ne _⊗	70.6
Fe/Fe _©	0.24
Масса оболочки (M _☉)	2.3×10^{-4}

¹ В таблице приведено долевое по массе содержание химических элементов относительно доленого содержания того же химического элемента на Солице.




Рис.2. Спектрофотометрическая эволюция новой N Mon 2012.

Основные фотометрические и спектроскопические характеристики, которые были получены для новой N Mon 2012 представлены в таб. 1. Спектрофотометрические наблюдения исследуемой новой представлены на рис. 2.

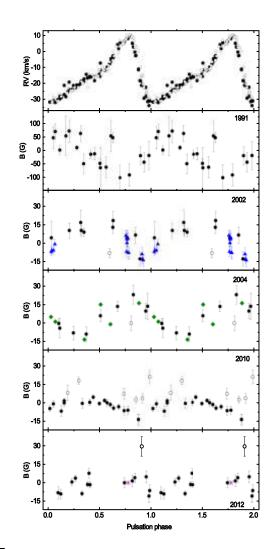
Результаты опубликованы в журнале «Письма в Астрономический журнал», т. 40, с. 351-362, 2014.

Эволюция пульсаций белого карлика в системе карликовой новой EZ Lyn типа WZ Sge

(Е.П. Павленко, А.А. Сосновский)

Анализ четырнадцати периодограмм EZ Lyn по данным фотометрии **2012 – 2014** гг. (2 – 3.5 г. после вспышки 2010 г.), полученным в КрАО на ЗТШ, на 2-м телескопе обсерватории Терскол и на 1.5-м телескопе ТЮБИТАК выявил существование сигналов с периодами **279 сек**, **256 сек**, **235 сек и 864 сек**.

Мы интерпретировали их как независимые нерадиальные пульсации белого карлика, однако нельзя исключить также возможность, того, что линейная комбинация частот 100 циклов/сут. и гармоники орбитального периода могли образовать частоту 368 циклов/сут. (235 сек.). Сигнал на 864 сек. регистрировался как транзиентный в течение первого пребывания в полосе нестабильности после вспышки 2006 г. 256-сек. сигнал - это хорошо известная пульсация EZ Lyn, с которой она вступила в полосу нестабильности после вспышки 2010 г.


Сигналы на 279 сек. и 235 сек. обнаружены впервые.

Фурье периодграммы для 14-и ночей 2012—2014 гг.

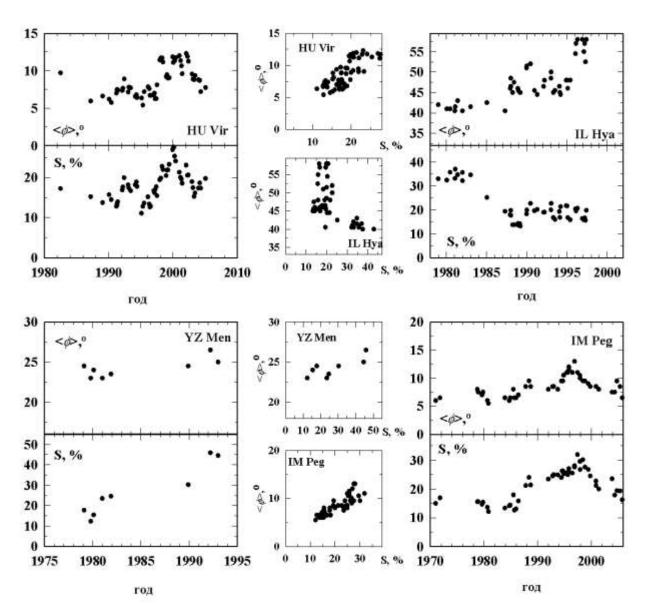
Звёздный магнетизм

Спектрополяриметрическое исследование избранных холодных сверхгигантов

В. Бутковская, С. Плачинда, Д. Бакланова

Конвективные сверхгиганты представляют хорошую возможность для исследования связи магнитного поля и эволюции звёзд. Результаты спектрополяриметрического изучения магнитного поля классических цефеид eta AqI и zet Gem позволяют предположить, что характер переменности магнитных полей этих звёзд нестабилен от года к году.

Амплитуда, среднее значение за пульсационный период (7.176726 дня), фазы максимума и минимума продольного поля eta Aql меняются от года к году (см. рисунок).

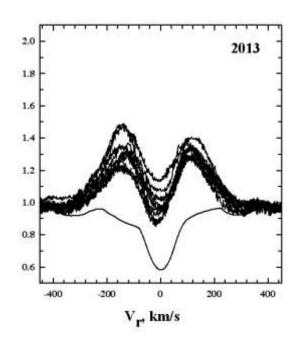

Продольное магнитное поле zet Gem в декабре 2002 – январе 2003 изменялось в диапазоне от -9 до +26 Гс. В декабре 2003 – марте 2004 – в диапазоне от 4 до 12 Гс. При этом в последний сет наблюдений среднее магнитное поле за 5 ночей составило 8.2 ± 1.6 Гс (отношение сигнал/шум = 5.1).

Результаты были представлены на IAU Symposium No. 307. New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry, June 23-27, 2014, Geneva, Switzerland.

Лучевые скорости и измеренное в разные годы продольное магнитное поле eta Aql, свернутое с фазами периода радиальных пульсаций 7.176726 дня

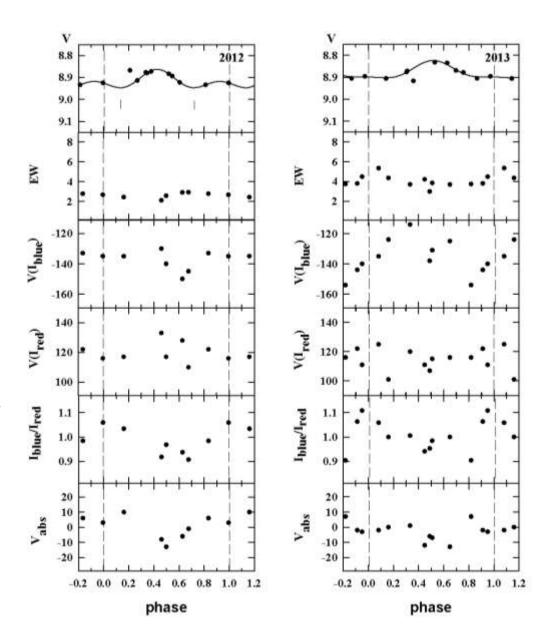
Изменения запятненности 16 систем типа RS CVn на долговременной шкале

И.Ю. Алексеев (КрАО), А.В. Кожевникова (АО УрФУ)


Для 16 активных систем типа RS CVn отмечены циклические изменения площади пятен S (в процентах поверхности звезды) и их средней широты < ф> (в градусах) от времени, аналогичные солнечному циклу Вольфа.

Линейная зависимость <ф>
от S указывает на широтный дрейф пятен по мере развития и дифференциальное вращение звезды солнечного (IL Hya) или антисолнечного (HU Vir, IM Peg) типа.

Статья И.Ю. Алексеева (КрАО) и А.В. Кожевниковой (УрФУ) подготовлена для журнала Астрофизика.


Звёздный ветер, как ключ к пониманию спектральной активности переменной IN Com

О.В. Козлова, И.Ю. Алексеев

IN Com – известная звезда с активностью. Однако, форма профиля линии На и изменения ее параметров (эквивалентная ширина EW, лучевые скорости синего V(I_{blue}) и (I_{red}) красного компонентов, отношения интенсивностей компонентов И положения абсорбции) центральной с фазой вращения хромосферной звезды типичны ДЛЯ не активности, и указывает на присутствие около звезды горячего неоднородного по долготе диска.

Статья О.В. Козловой и И.Ю. Алексеева, представлена в А.N., 2014.

